Mitral valvular interstitial cell responses to substrate stiffness depend on age and anatomic region.
نویسندگان
چکیده
The material properties of heart valves depend on the subject's age, the state of the disease and the complex valvular microarchitecture. Furthermore, valvular interstitial cells (VICs) are mechanosensitive, and their synthesis of extracellular matrix not only determines the valve's material properties but also provides an adhesive substrate for VICs. However, the interrelationship between substrate stiffness and VIC phenotype and synthetic properties is poorly understood. Given that the local mechanical environment (substrate stiffness) surrounding VICs differs among different age groups and different anatomic regions of the valve, it was hypothesized that there may be an age- and valve-region-specific response of VICs to substrate stiffness. Therefore, 6-week-, 6-month- and 6-year-old porcine VICs from the center of the mitral valve anterior leaflet (MVAC) and posterior leaflet (PML) were seeded onto poly(ethylene) glycol hydrogels of different stiffnesses and stained for markers of VIC activation (smooth muscle alpha-actin (SMaA)) and collagen synthesis (heat shock protein-47 (HSP47), prolyl 4-hydroxylase (P4H)). Six-week-old MVAC demonstrated decreased SMaA, P4H and HSP47 on stiffer gels, while 6-week-old PML only demonstrated decreased HSP47. Six-month-old MVAC demonstrated no difference between substrates, while 6-month-old PML demonstrated decreased SMaA, P4H and HSP47. Six-year-old MVAC demonstrated decreased P4H and HSP47, while 6-year-old PML demonstrated decreased P4H and increased HSP47. In conclusion, the age-specific and valve-region-specific responses of VICs to substrate stiffness link VIC phenotype to the leaflet regional matrix in which the VICs reside. These data provide further rationale for investigating the role of substrate stiffness in VIC remodeling within diseased and tissue engineered valves.
منابع مشابه
Dysregulation of valvular interstitial cell let-7c, miR-17, miR-20a, and miR-30d in naturally occurring canine myxomatous mitral valve disease
Canine myxomatous mitral valve disease (MMVD) resembles the early stages of myxomatous pathology seen in human non-syndromic mitral valve prolapse, a common valvular heart disease in the adult human population. Canine MMVD is seen in older subjects, suggesting age-related epigenetic dysregulation leading to derangements in valvular cell populations and matrix synthesis or degradation. We hypoth...
متن کاملDetermination of local and global elastic moduli of valve interstitial cells cultured on soft substrates.
The elasticity of the extracellular matrix profoundly affects biological responses of cells, but also their mechanical properties. Single cell mechanical properties are often measured by atomic force microscopy (AFM), but technical guidelines for AFM measurement of cells grown on soft substrates are not well established. In this study, the local and global elastic moduli of aortic valve interst...
متن کاملMitral valve endothelial cells with osteogenic differentiation potential.
OBJECTIVE Cardiac valvular endothelium is unique in its ability to undergo endothelial-to-mesenchymal transformation, a differentiation process that is essential for valve development and has been proposed as mechanism for replenishing the interstitial cells of mature valves. We hypothesized that the valvular endothelium contains endothelial cells that are direct precursors to osteoblastic valv...
متن کاملCorrelation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis.
It has been speculated that heart valve interstitial cells (VICs) maintain valvular tissue homeostasis through regulated extracellular matrix (primarily collagen) biosynthesis. VICs appear to be phenotypically plastic, inasmuch as they transdifferentiate into myofibroblasts during valve development, disease, and remodeling. Under normal physiological conditions, transvalvular pressures (TVPs) o...
متن کاملDifferential Attachment of Pulmonary Cells on PDMS Substrate with Varied Features
Cancer is now a global concern, and control of the function of cancer cells is recognized as an important challenge. Although many aggressive chemical and radiation methods are in practice to eliminate cancer cells, most imply severe adverse toxic effects on patients. Taking advantage of natural physical differences between cancer and normal cells might benefit the patient with more specific cy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biomaterialia
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2011